popmon.analysis package
Subpackages
- popmon.analysis.comparison package
- Submodules
- popmon.analysis.comparison.comparisons module
- popmon.analysis.comparison.hist_comparer module
- popmon.analysis.profiling package
Submodules
popmon.analysis.apply_func module
- class popmon.analysis.apply_func.ApplyFunc(apply_to_key, store_key='', assign_to_key='', apply_funcs_key='', features=None, apply_funcs=None, metrics=None, msg='')
Bases:
Module
This module applies functions to specified feature and metrics.
Extra parameters (kwargs) can be passed to the apply function.
- __init__(apply_to_key, store_key='', assign_to_key='', apply_funcs_key='', features=None, apply_funcs=None, metrics=None, msg='')
Initialize an instance of ApplyFunc.
- Parameters
apply_to_key (str) – key of the input data to apply funcs to.
assign_to_key (str) – key of the input data to assign function applied-output to. (optional)
store_key (str) – key of the output data to store in the datastore (optional)
apply_funcs_key (str) – key of to-be-applied functions in data to store (optional)
features (list) – list of features to pick up from input data and apply funcs to (optional)
metrics (list) – list of metrics to apply funcs to (optional)
msg (str) – message to print out at start of transform function. (optional)
apply_funcs (list) –
functions to apply (list of dicts):
’func’: function to apply
’suffix’ (string, optional): suffix added to each metric. default is function name.
’prefix’ (string, optional): prefix added to each metric.
’features’ (list, optional): features the function is applied to. Overwrites features above
’metrics’ (list, optional): metrics the function is applied to. Overwrites metrics above
’entire’ (boolean, optional): apply function to the entire feature’s dataframe of metrics?
’args’ (tuple, optional): args for ‘func’
’kwargs’ (dict, optional): kwargs for ‘func’
- add_apply_func(func, suffix=None, prefix=None, metrics=None, features=None, entire=None, *args, **kwargs)
Add function to be applied to dataframe.
Can call this function after module instantiation to add new functions.
- Parameters
func – function to apply
suffix – (string, optional) suffix added to each metric. default is function name.
prefix – (string, optional) prefix added to each metric.
features – (list, optional) features the function is applied to. Overwrites features above
metrics – (list, optional) metrics the function is applied to. Overwrites metrics above
entire – (boolean, optional) apply function to the entire feature’s dataframe of metrics?
args – (tuple, optional) args for ‘func’
kwargs – (dict, optional) kwargs for ‘func’
- transform(apply_to_data, assign_to_data=None, apply_funcs=None)
Apply functions to specified feature and metrics
Each feature/metric combination is treated as a pandas series
- Parameters
datastore – input datastore
- Returns
updated datastore
- Return type
dict
- popmon.analysis.apply_func.apply_func(feature, selected_metrics, df, arr)
Apply function to dataframe
- Parameters
feature (str) – feature currently looping over
selected_metrics (list) – list of selected metrics to apply to
df – pandas data frame that function in arr is applied to
arr (dict) – dictionary containing the function to be applied to pandas dataframe.
- Returns
dictionary with outputs of applied-to metric pd.Series
- popmon.analysis.apply_func.apply_func_array(feature, metrics, apply_to_df, assign_to_df, apply_funcs, same_key)
Apply list of functions to dataframe
Split off for parallelization reasons
- Parameters
feature (str) – feature currently looping over
metrics (list) – list of selected metrics to apply functions to
apply_to_df – pandas data frame that function in arr is applied to
assign_to_df – pandas data frame the output of function is assigned to
apply_funcs – list of functions to apply to
same_key – if True, merge apply_to_df and assign_to_df before returning assign_to_df
- Returns
union of feature and assign_to_df
popmon.analysis.functions module
- popmon.analysis.functions.expand(df, shift=1)
Implementation of expanding window that can handle non-numerical values such as histograms
Split up input array into expanding sub-arrays
- Parameters
df (pd.DataFrame) – input dataframe to apply rolling function to.
shift (int) – shift of dataframe, default is 1 (optional)
fillvalue – default value to fill dataframe in case shift > 0 (optional)
- popmon.analysis.functions.expand_norm_hist_mean_cov(df, shift=1, *args, **kwargs)
Apply expanding normalized_hist_mean_cov function
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe with column of histograms
shift (int) – shift of dataframe, default is 1 (optional)
args – args passed on to hist_sum function
kwargs – kwargs passed on to hist_sum function
- Returns
dataframe with expanding normalized_hist_mean_cov results
- popmon.analysis.functions.expanding_apply(df, func, shift=1, *args, **kwargs)
Calculate expanding apply() to all columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
func – function to be applied
shift (int) – size of shift. default is 1.
args – args passed on to function
kwargs – kwargs passed on to function
- Returns
df with expanding results of function applied to all columns
- popmon.analysis.functions.expanding_hist(df, shift=1, *args, **kwargs)
Apply expanding histogram sum
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe with column of histograms
shift (int) – shift of dataframe, default is 1 (optional)
args – args passed on to hist_sum function
kwargs – kwargs passed on to hist_sum function
- Returns
dataframe with expanding hist_sum results
- popmon.analysis.functions.expanding_mean(df, shift=1)
Calculate expanding mean of all numeric columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
shift (int) – size of shift. default is 1.
- Returns
df with expanding means of columns
- popmon.analysis.functions.expanding_std(df, shift=1)
Calculate expanding std of all numeric columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
shift (int) – size of shift. default is 1.
- Returns
df with expanding std of columns
- popmon.analysis.functions.hist_sum(x, hist_name='')
Return sum of histograms
Usage: df[‘hists’].apply(hist_sum) ; series.apply(hist_sum)
- Parameters
x (pd.Series) – pandas series to extract histogram list from.
hist_name (str) – name of column to extract histograms from. needs to be set with axis=1 (optional)
- Returns
sum histogram
- popmon.analysis.functions.normalized_hist_mean_cov(x, hist_name='')
Mean normalized histogram and its covariance of list of input histograms
Usage: df[‘hists’].apply(normalized_hist_mean_cov) ; series.apply(normalized_hist_mean_cov)
- Parameters
x (pd.Series) – pandas series to extract histogram list from.
hist_name (str) – name of column to extract histograms from. needs to be set with axis=1 (optional)
- Returns
mean normalized histogram, covariance probability matrix
- popmon.analysis.functions.pull(row, suffix_mean='_mean', suffix_std='_std', cols=None)
Calculate normalized residual (pull) for list of cols
Function can be used by ApplyFunc module.
- Parameters
row (pd.Series) – row to apply pull function to
cols (list) – list of cols to calculate pull of
suffix_mean (str) – suffix of mean. mean column = metric + suffix_mean
suffix_std (str) – suffix of std. std column = metric + suffix_std
- popmon.analysis.functions.relative_chi_squared(row, hist_name='histogram', suffix_mean='_mean', suffix_cov='_cov', suffix_binning='_binning')
Calculate chi squared of normalized histogram with pre-calculated mean normalized histogram
- Parameters
row (pd.Series) – row to apply chi_squared function to.
hist_name (str) – name of column to extract histograms from. default is ‘histogram’ (optional)
suffix_mean (str) – suffix of mean. mean column = hist_name + suffix_mean (optional)
suffix_std (str) – suffix of std. std column = hist_name + suffix_std (optional)
suffix_binning (str) – suffix of binning. binning column = hist_name + suffix_binning (optional)
- popmon.analysis.functions.roll(df, window, shift=1)
Implementation of rolling window that can handle non-numerical columns such as histograms
- Parameters
df (pd.DataFrame) – input dataframe to apply rolling function to.
window (int) – size of rolling window
shift (int) – shift of dataframe, default is 1 (optional)
- popmon.analysis.functions.roll_norm_hist_mean_cov(df, window, shift=1, *args, **kwargs)
Apply rolling normalized_hist_mean_cov function
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe with column of histograms
window (int) – size of rolling window
shift (int) – shift of dataframe, default is 1 (optional)
args – args passed on to hist_sum function
kwargs – kwargs passed on to hist_sum function
- Returns
dataframe with rolling normalized_hist_mean_cov results
- popmon.analysis.functions.rolling_apply(df, window, func, shift=1, *args, **kwargs)
Calculate rolling apply() to all columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
window (int) – size of rolling window.
func – function to be applied
shift (int) – size of shift. default is 1.
args – args passed on to function
kwargs – kwargs passed on to function
- Returns
df with rolling results of function applied to all columns
- popmon.analysis.functions.rolling_hist(df, window, shift=1, *args, **kwargs)
Apply rolling histogram sum
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe with column of histograms
window (int) – size of rolling window
shift (int) – shift of dataframe, default is 1 (optional)
args – args passed on to hist_sum function
kwargs – kwargs passed on to hist_sum function
- Returns
dataframe with rolling hist_sum results
- popmon.analysis.functions.rolling_lr(df, window, index=0, shift=0)
Calculate rolling scipy lin_regress() to all columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
window (int) – size of rolling window.
index (int) – index of lin_regress results to return. default is 0.
shift (int) – size of shift. default is 0.
- Returns
df with rolling results of lin_regress() function applied to all columns
- popmon.analysis.functions.rolling_lr_zscore(df, window, shift=0)
Calculate rolling z-score of scipy lin_regress() to all columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
window (int) – size of rolling window.
shift (int) – size of shift. default is 0.
- Returns
df with rolling z-score results of lin_regress() function applied to all columns
- popmon.analysis.functions.rolling_mean(df, window, shift=1)
Calculate rolling mean of all numeric columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
shift (int) – size of shift. default is 1.
window (int) – size of rolling window.
- Returns
df with rolling mean of columns
- popmon.analysis.functions.rolling_std(df, window, shift=1)
Calculate rolling std of all numeric columns of a pandas dataframe
Function can be used by ApplyFunc module.
- Parameters
df (pd.DataFrame) – input pandas dataframe
shift (int) – size of shift. default is 1.
window (int) – size of rolling window.
- Returns
df with rolling std of columns
popmon.analysis.hist_numpy module
- popmon.analysis.hist_numpy.assert_similar_hists(hist_list, check_type=True, assert_type=(<class 'histogrammar.primitives.bin.Bin'>, <class 'histogrammar.primitives.sparselybin.SparselyBin'>, <class 'histogrammar.primitives.categorize.Categorize'>))
Assert consistent list of input histograms
Assert that type and dimension of all histograms in input list are the same.
- Parameters
hist_list (list) – list of input histogram objects to check on consistency
assert_type (bool) – if true, also assert type consistency of histograms (besides n-dim and datatype).
- popmon.analysis.hist_numpy.check_same_hists(hist1, hist2)
Check if two hists are the same
- Parameters
hist1 – input histogram 1
hist2 – input histogram 2
- Returns
boolean, true if two histograms are the same
- popmon.analysis.hist_numpy.check_similar_hists(hist_list, check_type=True, assert_type=(<class 'histogrammar.primitives.bin.Bin'>, <class 'histogrammar.primitives.sparselybin.SparselyBin'>, <class 'histogrammar.primitives.categorize.Categorize'>))
Check consistent list of input histograms
Check that type and dimension of all histograms in input list are the same.
- Parameters
hist_list (list) – list of input histogram objects to check on consistency
check_type (bool) – if true, also check type consistency of histograms (besides n-dim and datatype).
- Returns
bool indicating if lists are similar
- popmon.analysis.hist_numpy.get_2dgrid(hist, get_bin_labels=False)
Get filled x,y grid of first two dimensions of input histogram
- Parameters
hist – input histogrammar histogram
- Returns
x,y grid of first two dimensions of input histogram
- popmon.analysis.hist_numpy.get_consistent_numpy_1dhists(hist_list, get_bin_labels=False, crop_range=False)
Get list of consistent numpy hists for list of sparse (or bin) input histograms
Works for sparse and bin histograms. Note: for sparse histograms, all potential bins between low and high are picked up (also unfilled).
Note: a numpy histogram is a union of lists of bin_edges and number of entries This gives the full range of bin_centers, including zeros, which is not robust against (extreme) outliers. Ideally, use this for plotting of multiple histograms only.
- Parameters
hist_list (list) – list of input histogram objects
get_bin_labels (bool) – return bin labels as well, default is false.
crop_range (bool) – return a trimmed version of the histogram, between 5-95% quantiles.
- Returns
list of consistent 1d numpy hists for list of sparse input histograms
- popmon.analysis.hist_numpy.get_consistent_numpy_2dgrids(hist_list=None, get_bin_labels=False)
Get list of consistent x,y grids of first two dimensions of (sparse) input histograms
- Parameters
hist_list (list) – list of input histogrammar histograms
get_bin_labels (bool) – if true, return x-keys and y-keys describing binnings of 2d-grid.
- Returns
list of consistent x,y grids of first two dimensions of each input histogram in list
- popmon.analysis.hist_numpy.get_consistent_numpy_entries(hist_list, get_bin_labels=False)
Get list of consistent numpy bin_entries for list of 1d input histograms
Works for categorize, sparse and bin histograms. Note: for sparse histograms, only the filled bins are picked up. (this is not the case when calling get_consistent_numpy_1dhists(), which takes all bins b/n low and high.)
- Parameters
hist_list (list) – list of input histogrammar histograms
- Returns
list of consistent 1d numpy arrays with bin_entries for list of input histograms
- popmon.analysis.hist_numpy.get_consistent_numpy_ndgrids(hist_list=None, get_bin_labels=False, dim=3)
Get list of consistent x,y grids of first n dimensions of (sparse) input histograms
- Parameters
hist_list (list) – list of input histogrammar histograms
get_bin_labels (bool) – if true, return x-keys and y-keys describing binnings of 2d-grid.
dim (int) – number of dimension (>= 3)
- Returns
list of consistent x,y grids of first two dimensions of each input histogram in list
- popmon.analysis.hist_numpy.get_contentType(hist)
Get content type of bins of histogram
- Parameters
hist – input histogram
- Returns
string describing content type
- popmon.analysis.hist_numpy.get_ndgrid(hist, get_bin_labels=False, n_dim=2)
Get filled n-d grid of first n dimensions of input histogram
- Parameters
hist – input histogrammar histogram
- Returns
grid of first n dimensions of input histogram
- popmon.analysis.hist_numpy.prepare_2dgrid(hist)
Get lists of all unique x and y keys
Used as input by get_2dgrid(hist).
- Parameters
hist – input histogrammar histogram
- Returns
two sorted lists of unique x and y keys
- popmon.analysis.hist_numpy.prepare_ndgrid(hist, n_dim)
Get lists of all unique combinations of keys
Used as input by get_ndgrid(hist).
- Parameters
hist – input histogrammar histogram
- Returns
n sorted lists of keys
- popmon.analysis.hist_numpy.set_2dgrid(hist, keys)
Set 2d grid of first two dimensions of input histogram
Used as input by get_2dgrid(hist).
- Parameters
hist – input histogrammar histogram
xkeys (list) – list with unique x keys
ykeys (list) – list with unique y keys
- Returns
filled 2d numpy grid
- popmon.analysis.hist_numpy.set_ndgrid(hist, keys, n_dim)
Set n-d grid of first n dimensions of input histogram
Used as input by get_ndgrid(hist).
- Parameters
hist – input histogrammar histogram
keys (list) – list with unique keys per dim
- Returns
filled nd numpy grid
popmon.analysis.merge_statistics module
- class popmon.analysis.merge_statistics.MergeStatistics(read_keys, store_key)
Bases:
Module
Merging dictionaries of features containing dataframes with statistics as its values.
- __init__(read_keys, store_key)
Initialize an instance of MergeStatistics.
- Parameters
read_keys (list) – list of keys of input data to read from the datastore
store_key (str) – key of output data to store in the datastore
- transform(dicts)
Central function of the module.
Typically transform() takes something from the datastore, does something to it, and puts the results back into the datastore again, to be passed on to the next module in the pipeline.
- Parameters
datastore (dict) – input datastore
- Returns
updated output datastore
- Return type
dict